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Understanding employment outcomes for the 
formerly incarcerated
• Labor market perspective

• Evaluate the performance of alternative models to classify the employment 
outcomes of the formerly incarcerated

• Identify characteristics of formerly incarcerated that contribute to successful 
employment outcomes

• Employment outcomes
• Employed within 2 years of release
• Established stable employment within 2 years of release

• Three consecutive quarters of employment



Employment Outcomes for Formerly 
Incarcerated: Policy Imperative
• States experiencing severe labor shortages

• State unemployment rates are at historical lows
• Pool of available labor for employment has diminished in the last two years

• Aging of the labor force as baby boomers move to retirement age
• Restrictive US immigration policy

• State claims for unemployment insurance (layoffs) have reached historical lows
• Overall levels of claims
• Claims as a percentage of jobs

• State policy response to severe labor shortages
• States have begun to weigh the costs of incarceration against the need to address 

severe labor shortages
• State of Maine has implemented an early release program for nonviolent offenders to either 

jobs (primarily in the state’s tourism industry) or education
• Conditional commutation of sentences to target labor shortages in critical state industries



Employment Outcomes for Formerly 
Incarcerated: Policy Imperative
• Operational rationale

• Enhancing human capital and establishing job-ready skills while serving time
• prison-based reentry preparation (*)

• learning to accept responsibility for changing their criminal behavior, addressing substance 
abuse and health or mental health issues, and reconnecting with family, community,

• gaining the necessary education, learning new work skills, and reconnecting with employers. 
• Typical Exiter cohort from Illinois prisons approximately 30,000 per year, nearly ½ the 

size of a typical 4-year degree graduate cohort from all Illinois public universities
• tremendous amount of attention to employability and tracking of employment outcomes for 

holders of 4-year degrees, including federal reporting requirements
• Predominant attention on the formerly incarcerated related to first aforementioned goal, 

need to more fully integrate both sets of goals identified for reentry

IL Department of Corrections. 2006, “Inside Out: A Plan to Reduce Recidivism and Improve Public Safety”, Report 
from the Community Safety and Reentry Commission.



Employment Outcomes for Formerly 
Incarcerated: Policy Imperative
• Operational rationale

• State Income Tax Gain
• Annual state tax gain per cohort of formerly incarcerated from employment

• State income tax 3.75% X $20,000 ($10/hour) X 30,000 cohort X stable threshold
• State tax gain by stable employment threshold

• Stable employment at 30%- $6.75 million
• Stable employment at 50%- $11.25 million
• Stable employment at 70%- $15.75 million

• Costs per recidivism event(*)
• Taxpayer costs- $40,987
• Victimization costs- $57,418
• Indirect costs- $20,432

IL Sentencing Policy Advisory Council. 2015, “The High Costs of Recidivism”.



Methodology: Labor Market Features
(see Appendix)

• Personal characteristics
• race, gender, kids, education at admission, TABE math and reading 

(standardized scores reported at admission), age at release, jail time

• Value-added human capital during incarceration
• earned time credit for education, earned time credit for obtaining GED, 

industrial training program participation

• Local Labor Markets
• Cook vs Non-Cook, education composition of jobs by Cook neighborhood 



Methodology: Labor Market Labels

• Employed within 2 years of release
• Training set: Formerly incarcerated who were released in 2011Q1 – 2011Q4 

and employed within 8 quarters of their release
• Test set: Formerly incarcerated who were released in 2012Q1 – 2012Q4 and 

employed within 8 quarters of their release

• Established stable employment within 2 years of release
• Training set: Formerly incarcerated who were released in 2011Q1 – 2011Q4 

and employed for 3 consecutive quarters within 8 quarters of their release
• Test set :Formerly incarcerated who were released in 2012Q1 – 2012Q4 and 

employed for 3 consecutive quarters within 8 quarters of their release 



Methodology: Modeling Employment Outcomes
• Modeling the Classification of Employment Outcomes

• Train and Test Classification Models
• K Nearest Neighbors
• Logit regression 

• Modeling the impact of employment outcome predictors
• Odds ratios – impact of personal characteristics, value-added human capital 

during incarceration, and local labor market features on the likelihood of 
• Employment
• Stable employment 



Findings: 
Modeling the Classification of Employment Outcomes



Training and Testing Classification Models

• K Nearest Neighbor Classification Model
• An algorithm that stores all available cases and classifies new cases based on 

a similarity measure
• We allow K to vary to determine what value of K will produce the best 

classification performance – correctly identifying 2012 cohorts that were 
employed and those that realized stable employment

• The classification accuracy that depends on the number of correctly 
classified (true positives plus true negatives) individuals reaches 
about 0.65 with k equaling about 65



K Nearest Neighbor Classification Accuracy
Employment

Accuracy less than 0.65
Stable Employment

Accuracy less than 0.59



Training and Testing Classification Models

• Logistic Classification Model
• A regression model where the dependent variable is categorical
• Produced a higher classification accuracy, using the same features, on the test 

(2012 cohort) data of 0.67
• Correctly classified 62% of the 2012 cohort as finding stable employment



Performance of Logistic Classification Model 
Null (100%) versus Classification Accuracies
• Null Accuracy for employment of 2012 cohort

• With a naïve approach, correctly classify 64% of the time
• With Logistic model, correctly classify 67% of the time

• Null Accuracy for stable employment of 2012 Cohort
• With a naïve approach, correctly classify 50% of the time
• With Logistic model, correctly classify 62% of the time

• Area Under the ROC (receiver operating characteristic) curve
• Maximize True Positive Rate (or Sensitivity)
• Minimize False Positive Rate (or 1 – Specificity)



Performance of Logistic Classification Model 

Employment Stable Employment



Null Accuracy versus Classification Accuracy of Logistic 
Classification Model 

• Employment within 8 quarters
• 0.64 vs. 0.67

• Lives in Cook county
• 0.59 vs. 0.61

• Lives outside Cook county
• 0.68 vs. 0.71

• Stable Employment within 8 quarters
• 0.50 vs. 0.62

• Lives in Cook county
• 0.43 vs. 0.63

• Lives outside Cook county
• 0.55 vs. 0.63



When Model Performs Well
• True Positive Rate – Sensitivity or Recall

• Entire population of those released: 0.90
• Live in Cook county: 0.88
• Live outside Cook County: 0.92

• True Negative Rate – Specificity
• Entire population of those released: 0.72
• Live in Cook county: 0.80
• Live outside Cook County: 0.51

• Model does relatively well identifying 
those realizing employment within 2 years 
of release

• Model does relatively well at identifying 
those in Cook county that don’t find 
stable employment



Findings: 
Modeling the impact of employment outcome predictors



Likelihood of employment within 2 years of 
release
• Personal characteristics

• Whites are more than 2 times likely to be employed than others
• The likelihood of employment for Blacks, women and those with kids is more 

modest, 10% to 14%
• Formerly incarcerated with more than an elementary education and less than 

post-secondary education have the greatest likelihood of employment, 34%
• Success on standardized reading tests increases the potential for employment, 6%

• As age at time of release increases the employment probability decreases, 2% 
per year

• Those in the lowest segment of jail time have an 18% greater chance for employment 
and those in the highest segment, 10% less chance of employment    



Likelihood of employment within 2 years of 
release
• Value-Added human capital while incarcerated

• Those who successfully complete the earned time towards a GED (60 days) 
are 35% more likely to be employed

• The likelihood of employment for those who participate in the industrial 
training programs is 74% higher than those who do not

• However, those who participate more than 2 years are nearly 60% less likely to find 
employment

• Local labor markets
• Formerly incarcerated who resettle in Cook are nearly 20% more likely to find 

employment than others
• Resettlement in Cook neighborhoods where jobs require less than a post-

secondary degree typically decreases the chance of employment, 25% to 30%



Likelihood of employment within 2 years of 
release- Cook vs Non-Cook
• Personal characteristics

• Race and gender impacts are more prominent in Non-Cook
• Likelihood of employment due to education is similar across local geographies

• Standardized reading scores only have a significant impact in Non-Cook 
• Age at release and jail time generated similar ratios in Cook and Non-Cook

• Value-Added human capital while incarcerated
• Those who successfully complete the earned time towards a GED (60 days) are 30% 

to 35% more likely to be employed in Cook and Non-Cook
• Participation in industrial training programs has no impact on employment outcomes 

in Cook
• The likelihood of employment for those who participate in the industrial training 

programs is more than 2 times higher than those who do not among the formerly 
incarcerated who resettle in non-Cook

• However, those who participate more than 2 years are more than 60% less likely to find 
employment



Likelihood of stable employment within 2 
years of release- Overall
• Personal characteristics

• Blacks are less likely to find stable employment
• Other personal variables have a similar impact as reported for the likelihood of 

finding employment

• Value-Added human capital while incarcerated
• Value-added HC variables have a similar impact as reported for the likelihood of 

finding employment

• Local labor market
• Labor market variables have a similar impact as reported for the likelihood of finding 

employment



Likelihood of stable employment within 2 
years of release- Cook vs Non-Cook
• Personal characteristics

• Likelihood of establishing stable employment is similar to finding employment 
with one exception

• Whites are no more likely to establish stable employment in Cook than others but more 
than 2 times more likely in non-Cook

• Value-Added human capital while incarcerated
• In Cook, none of the value-added HC are significant for establishing stable 

employment
• In non-Cook, earned credit towards a GED and participation in industrial 

training impact stable employment



Summary Findings

• Modeling the Classification of Employment Outcomes
• Logistic regression produces a higher classification accuracy than k-nearest neighbor
• Model classifying employment within 2 years produces better results for true 

positives than stable employment in both Cook and non-Cook
• True negative rate higher in Cook than non-Cook

• Modeling the impact of employment outcome predictors
• Employment within 2 years: major impacts

• Personal characteristics: race and high school degree (or equivalent) at time of admission
• Value-added HC: earned credit towards GED and industrial training (less than 2 years)
• Local labor market: earned credit towards GED impacts in both Cook and non-Cook; industrial 

training (less than 2 years) impacts only non-Cook
• Stable Employment within 2 years: major impacts

• Similar pattern of impacts to finding employment although generally at lower odds ratios
• Local labor market: earned credit towards GED impacts only non-Cook; industrial training 

(less than 2 years) impacts only non-Cook



Implication of Findings for Policy Imperative

• Facilitating reentry of formerly incarcerated to relieve labor shortages
• Employment outcomes for the formerly incarcerated are more robust in non-Cook than Cook
• Alignment of DOC reentry policy with labor shortages would need to recognize the local labor 

market dynamic of the formerly incarcerated
• Reentry policy that targets labor shortages in the non-Cook region may have the greatest 

potential for success

• Impact of value-added human capital during incarceration
• Persistent positive effect of earned credit towards GED and industrial training programs on 

employment outcomes in non-Cook

• Mobility of labor
• Models of labor market mobility typically identify barriers that prevent optimum supply and 

demand
• Prison reentry programs need to recognize destination of parolee as potential barrier to 

optimum supply and demand



Next Steps

• Augment the current analysis
• Join employment outcomes for the formerly incarcerated to firm characteristics to 

inform the formulation of job placement strategies 
• Clustering of the formerly incarcerated by firm size, firm average earnings or firm structure
• Explore linkages between specific DOC industrial training programs and industry of 

employment for the formerly incarcerated
• Broaden the comparison between logistic regression and alternative classification 

models
• Distinguish employment outcome impacts comparing self-reported human capital at 

time of admission to documented value-added human capital while incarcerated

• Expand employment outcome measures for the formerly incarcerated 
• patterns of hiring, separations, job stability with the same employer, earnings in 

stable jobs, and a longitudinal perspective on job flows across industries



Appendix



Methodology: Labor Market Features
• Personal characteristics

• Race: racewh (1= whites, 0= others); racebl (1= blacks, 0= others)
• Gender (1= male, 0= female)
• Kids (0 to 6 kids)

• Top coded at 6 kids
• Education at admission 

• Educ (1= none; 2= elementary; 3= some HS; 4= HS degree; 5= some post-secondary 
technical; 6= some post-secondary non-technical)

• Educ Elem (1= none or some elementary; 0= other)
• Educ Post-Sec (1= at least some post-secondary; 0= other)

• TABE math (standardized math score reported at admission)
• TABE reading (standardized reading score reported at admission)
• Age at release (in years)
• Jail time (in days) 



Methodology: Labor Market Features
• Value-added human capital during incarceration

• Earned time credit for education (number of days credited for education program)
• Earned time credit for obtaining GED (number of days credited for GED pursuit)
• Industrial training programs (see list of training programs)

• Participatie Ind Train (1= 1 month or more participation; 0= 0 months participation)
• Participation Ind Train 75% (1= 24 months or more of participation; 0= less than 24 months)

• Local Labor Markets
• Cook vs Non-Cook

• Intended destination address of parolee as either in Cook county or non-Cook county in Illinois
• Education composition of jobs by Cook neighborhood

• Cook neigh < HS (1= two neighborhoods with the highest percentage of employed persons with less than 
High School

• Cook neigh HS (1= two neighborhoods with the highest percentage of employed persons with High School 
degree or equivalent

• Cook neigh Post-Sec (1= two neighborhoods with the highest percentage of employed persons with some 
Post-Secondary

• Cook neigh Post-Sec degree (1= two neighborhoods with the highest percentage of employed persons with a 
Post-Secondary degree



DOC Industrial Training Programs







Worked in 2 Years: Total
Logit Regression Results                            
============================================================================== 
Dep. Variable:          worked_n_2yrs   No. Observations:                28265 
Model:                          Logit   Df Residuals:                    28244 
Method:                           MLE   Df Model:                           20 
Date:                Sat, 03 Jun 2017   Pseudo R-squ.:                 0.06995 
Time:                        08:35:06   Log-Likelihood:                -17138. 
converged:                       True   LL-Null:                       -18427. 
                                        LLR p-value:                     0.000 
=========================================================================================== 
                              coef    std err          z      P>|z|      [95.0% Conf. Int.] 
------------------------------------------------------------------------------------------- 
racervwh                    0.8200      0.044     18.554      0.000         0.733     0.907 
racervbl                    0.1295      0.039      3.347      0.001         0.054     0.205 
sex                        -0.1508      0.042     -3.592      0.000        -0.233    -0.069 
kidsrv                      0.0903      0.008     10.724      0.000         0.074     0.107 
agerlse                    -0.0207      0.001    -16.269      0.000        -0.023    -0.018 
jailtime                   -0.0006   8.17e-05     -6.792      0.000        -0.001    -0.000 
jailtime1                   0.1652      0.034      4.911      0.000         0.099     0.231 
jailtime2                  -0.0952      0.040     -2.354      0.019        -0.174    -0.016 
gttyp17                    -0.0003      0.000     -0.597      0.551        -0.001     0.001 
gttyp24                     0.0060      0.001      3.993      0.000         0.003     0.009 
tabe1mthsrv2               -0.0174      0.013     -1.304      0.192        -0.044     0.009 
tabe1rdgsrv2                0.0552      0.011      5.036      0.000         0.034     0.077 
educlvlrv                   0.2914      0.014     21.506      0.000         0.265     0.318 
educlvlrv2                 -0.4531      0.054     -8.323      0.000        -0.560    -0.346 
educlvlrv4                 -0.7367      0.096     -7.679      0.000        -0.925    -0.549 
duration_months_calcrv3     0.5543      0.181      3.056      0.002         0.199     0.910 
duration_months_calcrv5    -0.8502      0.316     -2.691      0.007        -1.469    -0.231 
c000rv1                     0.1780      0.041      4.313      0.000         0.097     0.259 
cd01rv2                    -0.2968      0.050     -5.907      0.000        -0.395    -0.198 
cd02rv2                    -0.0105      0.047     -0.223      0.823        -0.103     0.082 
cd03rv2                    -0.3184      0.055     -5.806      0.000        -0.426    -0.211 



Worked in 2 Years: Cook
Logit Regression Results                            
============================================================================== 
Dep. Variable:          worked_n_2yrs   No. Observations:                12593 
Model:                          Logit   Df Residuals:                    12576 
Method:                           MLE   Df Model:                           16 
Date:                Sat, 03 Jun 2017   Pseudo R-squ.:                 0.04332 
Time:                        08:39:23   Log-Likelihood:                -8082.1 
converged:                       True   LL-Null:                       -8448.1 
                                        LLR p-value:                2.054e-145 
=========================================================================================== 
                              coef    std err          z      P>|z|      [95.0% Conf. Int.] 
------------------------------------------------------------------------------------------- 
racervwh                    0.2769      0.087      3.189      0.001         0.107     0.447 
racervbl                   -0.5353      0.056     -9.573      0.000        -0.645    -0.426 
sex                        -0.0294      0.061     -0.484      0.629        -0.149     0.090 
kidsrv                      0.0728      0.012      6.180      0.000         0.050     0.096 
agerlse                    -0.0104      0.002     -5.622      0.000        -0.014    -0.007 
jailtime                   -0.0003      0.000     -3.011      0.003        -0.001    -0.000 
jailtime1                   0.1056      0.050      2.114      0.035         0.008     0.203 
jailtime2                  -0.0764      0.054     -1.407      0.159        -0.183     0.030 
gttyp17                     0.0006      0.001      0.672      0.502        -0.001     0.002 
gttyp24                     0.0063      0.002      2.557      0.011         0.001     0.011 
tabe1mthsrv2                0.0095      0.020      0.467      0.640        -0.030     0.049 
tabe1rdgsrv2                0.0288      0.017      1.744      0.081        -0.004     0.061 
educlvlrv                   0.3055      0.020     15.621      0.000         0.267     0.344 
educlvlrv2                 -0.4246      0.088     -4.798      0.000        -0.598    -0.251 
educlvlrv4                 -0.5996      0.130     -4.618      0.000        -0.854    -0.345 
duration_months_calcrv3     0.2739      0.256      1.071      0.284        -0.227     0.775 
duration_months_calcrv5    -0.5791      0.442     -1.309      0.191        -1.446     0.288 
=========================================================================================== 



Worked in 2 Years: non-Cook
Logit Regression Results                            
============================================================================== 
Dep. Variable:          worked_n_2yrs   No. Observations:                15672 
Model:                          Logit   Df Residuals:                    15655 
Method:                           MLE   Df Model:                           16 
Date:                Mon, 05 Jun 2017   Pseudo R-squ.:                 0.09842 
Time:                        13:13:45   Log-Likelihood:                -8934.4 
converged:                       True   LL-Null:                       -9909.7 
                                        LLR p-value:                     0.000 
=========================================================================================== 
                              coef    std err          z      P>|z|      [95.0% Conf. Int.] 
------------------------------------------------------------------------------------------- 
racervwh                    1.1744      0.055     21.339      0.000         1.067     1.282 
racervbl                    0.5812      0.052     11.099      0.000         0.479     0.684 
sex                        -0.2236      0.058     -3.834      0.000        -0.338    -0.109 
kidsrv                      0.1012      0.012      8.331      0.000         0.077     0.125 
agerlse                    -0.0277      0.002    -15.630      0.000        -0.031    -0.024 
jailtime                   -0.0009      0.000     -7.235      0.000        -0.001    -0.001 
jailtime1                   0.1774      0.046      3.846      0.000         0.087     0.268 
jailtime2                  -0.0832      0.060     -1.379      0.168        -0.201     0.035 
gttyp17                    -0.0005      0.001     -0.815      0.415        -0.002     0.001 
gttyp24                     0.0048      0.002      2.552      0.011         0.001     0.009 
tabe1mthsrv2               -0.0243      0.018     -1.352      0.176        -0.060     0.011 
tabe1rdgsrv2                0.0646      0.015      4.352      0.000         0.035     0.094 
educlvlrv                   0.2886      0.019     15.350      0.000         0.252     0.325 
educlvlrv2                 -0.4088      0.071     -5.769      0.000        -0.548    -0.270 
educlvlrv4                 -0.8734      0.145     -6.027      0.000        -1.157    -0.589 
duration_months_calcrv3     0.7823      0.264      2.958      0.003         0.264     1.301 
duration_months_calcrv5    -1.0810      0.456     -2.369      0.018        -1.975    -0.187 
=========================================================================================== 



Stable Employment: Total
Logit Regression Results                            
============================================================================== 
Dep. Variable:           worked_3qtrs   No. Observations:                28265 
Model:                          Logit   Df Residuals:                    28244 
Method:                           MLE   Df Model:                           20 
Date:                Sat, 03 Jun 2017   Pseudo R-squ.:                 0.05965 
Time:                        08:46:23   Log-Likelihood:                -18423. 
converged:                       True   LL-Null:                       -19592. 
                                        LLR p-value:                     0.000 
=========================================================================================== 
                              coef    std err          z      P>|z|      [95.0% Conf. Int.] 
------------------------------------------------------------------------------------------- 
racervwh                    0.4704      0.042     11.318      0.000         0.389     0.552 
racervbl                   -0.1189      0.038     -3.138      0.002        -0.193    -0.045 
sex                        -0.2912      0.039     -7.465      0.000        -0.368    -0.215 
kidsrv                      0.0653      0.008      8.136      0.000         0.050     0.081 
agerlse                    -0.0215      0.001    -17.338      0.000        -0.024    -0.019 
jailtime                   -0.0005   8.63e-05     -5.445      0.000        -0.001    -0.000 
jailtime1                   0.1343      0.031      4.286      0.000         0.073     0.196 
jailtime2                  -0.1278      0.040     -3.166      0.002        -0.207    -0.049 
gttyp17                     0.0003      0.000      0.738      0.461        -0.001     0.001 
gttyp24                     0.0043      0.001      3.262      0.001         0.002     0.007 
tabe1mthsrv2                0.0040      0.012      0.333      0.739        -0.020     0.028 
tabe1rdgsrv2                0.0300      0.010      3.035      0.002         0.011     0.049 
educlvlrv                   0.2496      0.012     19.970      0.000         0.225     0.274 
educlvlrv2                 -0.4547      0.056     -8.076      0.000        -0.565    -0.344 
educlvlrv4                 -0.6657      0.104     -6.413      0.000        -0.869    -0.462 
duration_months_calcrv3     0.5136      0.158      3.255      0.001         0.204     0.823 
duration_months_calcrv5    -0.6912      0.306     -2.259      0.024        -1.291    -0.091 
c000rv1                     0.1100      0.039      2.838      0.005         0.034     0.186 
cd01rv2                    -0.3339      0.048     -6.887      0.000        -0.429    -0.239 
cd02rv2                     0.0134      0.047      0.287      0.774        -0.078     0.105 
cd03rv2                    -0.3776      0.053     -7.102      0.000        -0.482    -0.273 
=========================================================================================== 



Stable Employment: Cook
Logit Regression Results                            
============================================================================== 
Dep. Variable:           worked_3qtrs   No. Observations:                12593 
Model:                          Logit   Df Residuals:                    12576 
Method:                           MLE   Df Model:                           16 
Date:                Sat, 03 Jun 2017   Pseudo R-squ.:                 0.03881 
Time:                        08:49:36   Log-Likelihood:                -8324.5 
converged:                       True   LL-Null:                       -8660.6 
                                        LLR p-value:                1.010e-132 
=========================================================================================== 
                              coef    std err          z      P>|z|      [95.0% Conf. Int.] 
------------------------------------------------------------------------------------------- 
racervwh                   -0.0423      0.078     -0.540      0.589        -0.196     0.111 
racervbl                   -0.7107      0.053    -13.323      0.000        -0.815    -0.606 
sex                        -0.2271      0.058     -3.902      0.000        -0.341    -0.113 
kidsrv                      0.0489      0.011      4.253      0.000         0.026     0.071 
agerlse                    -0.0137      0.002     -7.497      0.000        -0.017    -0.010 
jailtime                   -0.0002      0.000     -2.118      0.034        -0.000 -1.67e-05 
jailtime1                   0.0258      0.048      0.536      0.592        -0.068     0.120 
jailtime2                  -0.1505      0.055     -2.750      0.006        -0.258    -0.043 
gttyp17                     0.0003      0.001      0.400      0.689        -0.001     0.002 
gttyp24                     0.0042      0.002      1.892      0.059        -0.000     0.009 
tabe1mthsrv2                0.0214      0.019      1.132      0.258        -0.016     0.059 
tabe1rdgsrv2                0.0134      0.015      0.868      0.385        -0.017     0.044 
educlvlrv                   0.2695      0.018     14.728      0.000         0.234     0.305 
educlvlrv2                 -0.3915      0.094     -4.184      0.000        -0.575    -0.208 
educlvlrv4                 -0.4669      0.138     -3.373      0.001        -0.738    -0.196 
duration_months_calcrv3     0.2317      0.238      0.973      0.331        -0.235     0.699 
duration_months_calcrv5    -0.5178      0.447     -1.158      0.247        -1.394     0.358 
=========================================================================================== 



Stable Employment: non-Cook
Logit Regression Results                            
============================================================================== 
Dep. Variable:           worked_3qtrs   No. Observations:                15672 
Model:                          Logit   Df Residuals:                    15655 
Method:                           MLE   Df Model:                           16 
Date:                Sat, 03 Jun 2017   Pseudo R-squ.:                 0.07324 
Time:                        08:52:42   Log-Likelihood:                -10022. 
converged:                       True   LL-Null:                       -10815. 
                                        LLR p-value:                     0.000 
=========================================================================================== 
                              coef    std err          z      P>|z|      [95.0% Conf. Int.] 
------------------------------------------------------------------------------------------- 
racervwh                    0.7848      0.053     14.869      0.000         0.681     0.888 
racervbl                    0.2451      0.052      4.751      0.000         0.144     0.346 
sex                        -0.3453      0.053     -6.551      0.000        -0.449    -0.242 
kidsrv                      0.0720      0.011      6.386      0.000         0.050     0.094 
agerlse                    -0.0262      0.002    -15.546      0.000        -0.029    -0.023 
jailtime                   -0.0008      0.000     -6.134      0.000        -0.001    -0.001 
jailtime1                   0.1770      0.042      4.221      0.000         0.095     0.259 
jailtime2                  -0.0809      0.059     -1.367      0.172        -0.197     0.035 
gttyp17                     0.0005      0.001      0.935      0.350        -0.001     0.002 
gttyp24                     0.0035      0.002      2.154      0.031         0.000     0.007 
tabe1mthsrv2                0.0018      0.016      0.114      0.909        -0.029     0.033 
tabe1rdgsrv2                0.0336      0.013      2.592      0.010         0.008     0.059 
educlvlrv                   0.2304      0.017     13.545      0.000         0.197     0.264 
educlvlrv2                 -0.4617      0.072     -6.453      0.000        -0.602    -0.321 
educlvlrv4                 -0.8900      0.159     -5.593      0.000        -1.202    -0.578 
duration_months_calcrv3     0.6994      0.217      3.228      0.001         0.275     1.124 
duration_months_calcrv5    -0.7765      0.427     -1.819      0.069        -1.613     0.060 
=========================================================================================== 
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